PENGARUH KANDUNGAN ABU DAN ZAT TERBANG TERHADAP MAKSIMUM FLUIDITAS BATUBARA FORMASI TANJUNG DI DAERAH SEKAKO, KALIMANTAN TENGAH

THE INFLUENCE OF ASH AND VOLATILE MATTER CONTENTS ON MAXIMUM FLUIDITY OF TANJUNG FORMATION COAL IN SEKAKO AREA, CENTRAL KALIMANTAN PROVINCE

  • Beny Wiranata Universitas Gadjah Mada
  • Hendra Amijaya Universitas Gadjah Mada
  • Ferian Anggara Universitas Gadjah Mada
  • Deddy N.S.P. Tanggara Universitas Gadjah Mada
Keywords: coal, ash, volatile matter, coal maximum fluidity, tanjung formation

Abstract

High to low volatile bituminous coals of Tanjung Formation in Central Kalimantan Province is known to be potentially used as a metallurgical or coking coal. Coal maximum fluidity is one important parameter which is strongly connected to the quality of the coke produced. This study aims to determine the relationship between coal maximum fluidity and  its volatile matter and ash content. Four coal from A seam and 6 coal from B seam of Tanjung Formation in Sekako area were sampled using a ply by ply channel sampling method. Samples are dominated by bright coal and banded bright coals lithotype. All coal samples are subjected to proximate and Gieseler plastometer analysis in the laboratory.  The coal samples   Laboratory results show that coal in the study area have ash content ranging from 2,79 to 9,05 (wt%, adb), volatile matter contents varies from 35,14 to 39,50 (wt%, adb) and coals maximum fluidity varies from 22263 to 49029 (ddpm). Further data evaluation indicates that in the study area, coal ash content are negatively correlated (r= -0.656, R2= 0.431) and had no significant effect on the maximum of coal fluidity  (r = -0,656, R2 = -0,431 and sig. 0,055 > 0,05). On the other hand, coal volatile matter are positively correlated (r = 0.794; R2 = 0.6301) and had a significant effect (sig. 0.003 <0.05) on the maximum fluidity of coal. The increase of ash content causes the decrease of coal maximum fluidity, whereas the increase of coal volatile matter causes the increase of coal maximum fluidity. The correlation of volatile matter content and coal maximum fluidity can be expressed by an equation of y = 6327,9x - 200248.

Downloads

Download data is not yet available.

Author Biographies

Hendra Amijaya, Universitas Gadjah Mada

Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada

Ferian Anggara, Universitas Gadjah Mada

Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada

References

Amarullah, D., 2009. Suatu Pemikiran Untuk Memanfaatkan Potensi Batubara Formasi Tanjung Di Daerah Lemo Kalimantan Tengah Sebagai Kokas. Kelompok Program Penelitian Energi Fosil, Pusat Sumber Daya Geologi, Bandun. v. 4, p. 1-11.

Arslan, V., dan Kemal., M., (2006): The Effect Of Inert Matters And Low Volatile Coal Addition On The Plasticity Of High Volatile Zonguldak Coals. The Journal Of The South African Institute Of Mining And Metallurgy. v. 106, p. 199-204.

American Society for Testing and Materials (ASTM) D-3174., 2012. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International, Philadephia, USA.

American Society for Testing and Materials (ASTM) D 3175., 2011. Standard Test Method for Volatile Matter Analysis. ASTM International, Philadephia, USA.

Badan Nasional Penanggulangan Bencana, 2009. Peta Pulau Kalimantan : geospasial.bnpb.go.id (diakses pada Mei 2018).

Darman, H., Sidi, F.H., 2000. An Outline of The Geology of Indonesia, Ikatan Ahli Geologi Indonesia.

Daulay, B., Santoso, B., Ningrum, N.S., 2015. Evaluation of Selected High Rank Coal in Kutai Basin, East Kalimantan Relating to Its Coking Properties. Indonesian Mining Journal. v. 18, No. 1., p. 1-10.

Diaz-Faes, E., Barriocanal, C., Diez, M.A., Alvarez, R., 2007. Characterization of Different Origin Coking Coals and Their Blends By Gieseler Plasticity and TGA. Journal of Analytical and Applied Pyrolisis. Elsevier. v. 80, p. 203-208.

Diez, M.A., Alvarez, R., Barriocanal, C., 2002. Coal for Metallurgical Coke Production : Prediction of Coke Quality and Future Requirements for Cokemaking. International Journal of Coal Geology, Elsevier. v. 50, p. 389-412.

Friederich, M.C., Moore, T.M., Flores, R.M., 2016. A Regional Review And New Insights Into SE Asian Cenozoic Coal-Bearing Sediments: Why Does Indonesia Have Such Extensive Coal Deposits?. International Journal of Coal Geology, Elsevier. v. 166, p. 2-35.

Friederich, M.C., dan van Leeuwen, T., 2017. A Review of The History of Coal Exploration, Discovery and Production in Indonesia : The Interplay of Legal Framework, Coal Geology and Exploration Strategy. International Journal of Coal Geology, Elsevier. v. 178, p. 56-73.

Heryanto, R., 2010. Geologi Cekungan Barito. Badan Geologi, Kementerian Energi Dan Sumber Daya Mineral, Bandung. 139 p.

Huda, M., 2013. Potensi Coking Coal Indonesia Untuk Mendukung Industri Peningkatan Nilai Tambah (PNT) Mineral. Pusat Penelitian dan Pengembangan Teknologi Mineral dan Batubara “tek-MIRA”, Bandung. v. 11, p. 44-53.

Lamberson, M.N., Bustin, R.M., Kalkreuth, W., 1991. Lithotype (maceral) Composition and Variation As Correlated With Paleo-Wetland Environments, Gates Formation, Northeastern British Columbia, Canada. International Journal of Coal Geology, Elsevier. v. 18, p. 87-124.

Miller, B.G., 2005. Coal Energy Systems. Elsevier Academic Press, USA, 526 p.

Mochizuki, Y., Naganuma R., Uoebo, K., Tsubouchi, N., 2017. Some Factors Influencing The Fluidity of Coal Blends : Particle Size, Blend Ratio and Inherent Oxygen Species. Fuel Processing Technology, Elsevier. v. 159, p. 67-75.

Nas, C., dan Hindartan, 2010. The Quality of Central Kalimantan Coking Coals. Kalimantan Coal and Mineral Resources. Proceeding MGEI-IAGI, Balikpapan, p. 1-11.

Riddell, J., dan Han, T., 2017. Ash Chwmistry Database For British Columbia Rocky Mountain Bituminous Coals. British Columbia Geological Survey. v. 10, 15 p.

Ryan, B., Gransden J., dan Price, J., 1998. Fludity of Western Canadian and Its Relationship to Other Coal and Coke Properties. British Columbia Geological Survey, 17 p.

Ryemshak, S.A., dan Jauro, A., 2016. Proximate analysis, Rheological Properties and Technological Application of Some Nigerian Coals. International Journal of Industrial Chemistry (IJIC). v. 4, p. 1-7.

Saputra, R., 2013. Statistika Terapan. STIKES Perintis Sumatra Barat. p. 22.

Sarwono, J., 2017. Mengenal Prosedur – Prosedur Popula Dalam SPSS 23. PT. Gramedia, Jakarta. 272 p.

Satyana, A.H., and Silitonga, P.D., 1994. Tectonic reversal in East Barito Basin, South Kalimantan: consideration of the types of inversion structures and petroleum system significance. Proceedings of the IPA 23rd Annual Convention. p. 57-74.

Shui, H., Li, H., Chang, H., Wang, Z., Gao, Z., Lei, Z., Ren, S., 2011. Modification of Sub-Bituminous Coal By Steam Treatment : Caking and Coking Properties. Fuel Processing technology, Elsevier. v. 92, p. 2299-2304.

Smedowski, L., Piechaczek, M., 2016. Impact Of Weathering On Coal Properties And Evolution Of Coke Quality Described By Optical And Mechanical Parameters. International Journal Of Coal Geology, Elsevier. v. 168, p. 119-130.

Soetrisno, Supriatna, S., Rustandi, E., Sanyoto, P., Hasan, K., 1994. Geological Map of The Buntok Quadrangle, Kalimantan. Geological Research and Development Centre, Bandung. 1 p.

Speight, J.G., 2005. Handbook of Coal Analysis, John Wiley and Sons, Inc., Hoboken, New Jersey. 222 p.

Speight, J.G., 2013. The Chemistry and Technology of Coal 3rd Edition. CRC Press. Taylor & Francis Group, London. 779 p.

Suarez Ruiz, I., Crelling, C.J., 2008. Applied Coal Petrology. Elsevier. 388 p.

Sukandarrumidi, 2009. Batubara Dan Pemanfaatannya. Gadjah Mada University Press, Yogyakarta. 247 p.

Supriatna, S., Sudrajat, A., Abidin H.Z., 1995. Geological Map of The Muara Teweh Quadrangle Kalimantan. Geological Research and Development Centre, Bandung. 1 p.

Taylor, G.H., Teichmuller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic Petrology. Gebruder Borntraeger, Stuttgart. 704 p.

Thomas, L., 2013. Coal Geology 2nd Edition. Willey-Blackwell, John Willey & Son Ltd., 431 p.

Tsubouchi, N., Mochizuki, Y., Ono, Y., Eebo, K., Takanohashi, T., Sakimoto, N., 2014. Sulfur And Nitrogen Distribution During Coal Carbonzation And The Influence Of These Elements On Coal Fluidity And Coke Strength. ISIJ International. v. 54, p. 2439-2445.

Vega, M.F., Fernandez, A.M., Diaz-Faes, E., Barriocanal, C., 2017. Improving The Properties Of High Volatile Coking Coals By Controlled Mild Oxidation. Fuel, Elsevier. v. 191, p. 574-582.

Witts, D., Hall, R., Nichols, G., dan Morley, R., 2012. A New Depositional and Provenance Model For The Tanjung Formation, Barito Basin, SE Kalimantan, Indonesia. Journal of Asia Earth Science, Elsevier. v. 56, p. 77-104.

Published
2020-08-31
Section
Buletin Sumber Daya Geologi