GEOKIMIA BIJIH DAN KONSENTRAT DARI CEBAKAN TEMBAGA-EMAS PORFIRI GRASBERG, TEMBAGAPURA

  • Ernowo ernowo PSDMBP
  • Bambang Pardiarto Pusat Sumber Daya Mineral Batubara dan Panas Bumi
  • Dwi Nugroho Sunuhadi Pusat Sumber Daya Mineral Batubara dan Panas Bumi

Abstract

Cebakan porfiri merupakan salah satu tipe cebakan hidrotermal yang proses pembentukannya berkaitan dengan intrusi porfiritik dengan kontrol struktur geologi yang dominan. Mineralisasi utama terjadi pada zona ubahan potasik berupa mineral-mineral sulfida yang terendapkan secara tersebar atau dalam urat-urat stockwork dan breksi hidrotermal dengan Cu sebagai kandungan logam paling dominan. Selain Cu, Au, Mo dan Ag yang sudah umum diekstrak, cebakan tipe porfiri juga mengandung unsur-unsur ikutan yang dapat bernilai ekonomis. Penelitian ini dilakukan untuk mengetahui kandungan unsur-unsur logam dalam bijih dan konsentrat bijih dari cebakan porfiri Cu-Au Grasberg dengan tujuan mengetahui jenis unsur-unsur ikutan lainnya yang berpeluang untuk dimanfaatkan karena bernilai ekonomis.

Metode analisis kimia AAS, ICP-OES, XRF, kolorimetri, spektrofotometri, turbidimetri, volumetri dilakukan terhadap 12 conto bijih terdiri dari masing-masing 3 conto dari jenis bijih MGO, HGO, SGO dan CLO, 11 conto konsentrat serta 1 conto tailing. Spektrofotometri UV-Vis dilakukan terhadap 2 conto konsentrat untuk mengetahui kandungan U dan Th.

Kadar Cu, Au dan Ag terkait dengan kandungan mineral-mineral sulfida di dalam bijih dan sudah terbukti ekonomis. Kadar Te dan Se di dalam bijih masing-masing 2,7 ppm dan 6,4 ppm. Di dalam konsentrat bijih, kadar kedua unsur tersebut meningkat menjadi 16 ppm Te dan 174 ppm Se. Data peneliti lain menunjukkan kandungan platinum group elements (PGE) yaitu Pd dan Pt di dalam konsentrat bijih masing-masing 1700 ppb dan 650 ppb. Data tersebut menunjukkan unsur-unsur ikutan Te, Se, Pt dan Pd dari cebakan porfiri Cu-Au Grasberg bisa diambil dari lumpur anoda sebagai produk ikutan dari proses pemurnian bijih tembaga.

Downloads

Download data is not yet available.

References

Anonim, 2011, Niobium-tantalum. British Geological Survey.

Anonim, 2016, Lithium. British Geological Survey.

Anonim, 2018, Uranium Resources as Co- and By-products of Polymetallic, Base, Rare Earth and Precious Metal Ore Deposits. International Atomic Energy Agency. Austria.

Anonim, https://ptfi.co.id/id/how-do-we-operate (PT. Freeport Indonesia, 2019) diakses 30 Januari 2019; 08.50.

Anonim,http://www.ptsmelting.com/product_diagram.htm. diupload 2005. diakses 30 Januari 2019; 12.20.

Austen, G. and Ballantyne, G., 2010, Geology and geochemistry of deep molybdenum mineralization at the Bingham Canyon mine, Utah, USA. Society of Economic Geologists Guidebook Series, 41, h. 35–49.

Ayres, R.U., Ayres, L.W. and Råde, I., 2002, The Life Cycle of Copper, its Co-Products and By-Products. World Business Council for Sustainable Development.

Butterman, W.C. and Reese Jr. R.G., 2003, Mineral Commodity Profiles – Rubidium. USGS.

Cannell, J., Cooke, D. R., Walshe, J. L. and Stein, H., 2005, Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit. Economic Geology, 100, h. 979-1003.

Cooke, D. R., Hollings, P., Wilkinson, J. J. and Tosdal, R. M., 2014, Geochemistry of porphyry deposits.

Cooke, D. R., Hollings, P. and Walshe, J. L., 2005, Giant porphyry deposits: characteristics, distribution, and tectonic controls. Economic geology, 100, h. 801-818.

Dahlkamp, F. J., 2009, Uranium deposits of the world, USA and Latin America: Berlin, Springer-Verlag, v. 4, 516 h.

Davis, A., Ruby, M. V., Bloom, M., Schoof, R., Freeman, G. and Bergstrom, P. D., 1996, Mineralogical constraints on the bioavailability of arsenic in smelter-impacted soils. Environmental Science and Technology, 30, h. 392–399.

Evans, R. K., 2014, Lithium. Di dalam: Gunn, A.G. (Ed), 2014. Critical Metals Handbook Chapter 10. John Wiley & Sons Ltd. Chichester, UK.

Fountain, C., 2013, The Whys and Wherefores of Penalty Elements in Copper Concentrates. Metallurgical Plant Design and Operating Strategies Metplant 2013.

Garwin, S. L., 2002. The geologic setting of intrusion-related hydrothermal systems near the Batu Hijau porphyry copper-gold deposit, Sumbawa, Indonesia. Society of Economic Geologists Special Publication 9, h. 333-366.

Goldfarb, R. J., Berger, B. R., George, M. W. and Seal II. R.S., 2017, Tellurium. Di dalam: Schulz, K. J., DeYoung, Jr. J. H., Seal II, R. S. dan Bradley, D. C. (Ed.), 2017, Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply. USGS.

Heidrick, T. L. dan Titley, S. R., 1982, Fracture and dike patterns in Laramide plutons and their structural and tectonic implications. University of Arizona Press, Tucson.

Hutabarat, I. 2017, Karakterisasi konsentrat tembaga Indonesia untuk diklat peningkatan nilai tambah tembaga. Geominerba 1, h. 23-28.

Ingham, P. D., White, I. R. and Jackson, S., 2012, Greenbushes Lithium Operations. Talison Lithium Ltd. Technical Report.

John, D. A. dan Taylor, R. D., 2016, By-Products of Porphyry Copper and Molybdenum Deposits. Di dalam Verplanck, P. L. dan Hitzman, M.W., (Ed.), 2016, Rare Earth and Critical Elements in Ore Deposits. Reviews in Economic Geology, 18, h. 137-164.

Jordan, B. W., Eggert, R. G., Dixon, B. W., and Carlsen, B. W., 2015, Thorium: Crustal Abundance, Joint Production, and Economic Availability. U.S. Department of Energy Office of Nuclear Energy.

Gregory, M. J., Lang, J. R., Gilbert, S. and Hoal, K.O., 2013, Geometallurgy of the Pebble porphyry copper-gold-molybdenum deposit, Alaska: Implications for gold distribution and paragenesis. Economic Geology 108, h. 463–482.

Kesler, S. E., Chryssoulis, S. L. and Simon, G., 2002, Gold in porphyry copper deposits: its abundance and fate. Ore Geology Review 21, h. 103–124

Kunasz, I., 2006, Lithium Resources, in Kogel, J. E., Tridevi, N. C., Barker, J. M. and Krukowski, S.T. (Ed.), 2006, Industrial Minerals and Rocks, 7th Edition. h. 599-613,Society for Mining, Metallurgy and Exploration Inc, Litteton, Colorado, USA.

Kirkham, R. V., 1972, Porphyry deposits. Report of Activities: Geological Survey of Canada, Paper, pp.72-1.

Long, K. R., 1992, Reserves and production data for selected ore deposits in the United States found in the files of the Anaconda Copper Company: U.S. Geological Survey Open-File Report 92-002. 21 p.

Lowell, J. D. dan Guilbert, J. M., 1970, Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65, h. 373-408.

Lynch, D. C, Agaki, S. dan Davenport, W. G., 1991, Thermochemical nature of minor elements in copper smelting mattes. Metallurgical Transactions B, 22B: h. 667–688.

MacDonald, G. D dan Arnold, L. C., 1993, Geological and Geochemical zoning of the Grasberg Igneous Complex, Irian Jaya, Indonesia. Journal of Geochemical Exploration 50, h. 143-178.

McDowell, F. W., McMahon, T. P., Warren, P. Q. and Cloos, M., 1994, Intrusive and mineralization history of the Grasberg deposit, Irian Jaya, Indonesia. A.I.M.E. Preprint Number 3-92, 10h.

McFall, K. A., Naden, J., Roberts, S., Baker, T., Spratt, J. dan McDonald, I., 2018, Platinum-group minerals in the Skouries Cu-Au (Pd, Pt, Te) porphyry deposit. Ore Geology Reviews, 99, h. 344–364.

McLemore, T., 2018, Rare Earth Elements (REE) Deposits Associated with Great Plain Margin Deposits (Alkaline-Related), Southwestern United States and Eastern Mexico Virginia. Resources, 7, h. 42-44.

Melfos, V. and Voudouris, P.C., 2012, Geological, Mineralogical and Geochemical Aspects for Critical and Rare Metals in Greece. Minerals, 2, h. 300-317.

Newell, J. M. dan Peatfield, G. R., 1995, The Red-Chris porphyry copper-gold deposit, northwestern British Columbia; Di dalam T. G. Schroeter (ed.), 1995, Porphyry Deposits of the Northwestern Cordillera of North America, Canadian Institute of Mining, Metallurgy and Petroleum, 46, h. 674–688.

Pardiarto, B., 2007, Ringkasan tentang PT Freeport Indonesia dan PT Newmont Nusa Tenggara

Plant, J. A., Simpson, P. R., Smith, B. dan Windley, B. F., 1999, Uranium ore deposits—products of the radioactive Echo Bay U-Ni-Ag-Cu deposits, North West Territories, Canada. Economic Geology, 68, h. 635–656.

Pollard, P. J. dan Taylor, R. G. 2005, Ages of Intrusion, Alteration, and Mineralization at the Grasberg Cu-Au Deposit, Papua, Indonesia. Economic Geology, 100, h.1005–1020.

Ridley, J., 2013, Ore deposit geology. Cambridge University Press.

Saleh, R., 2012, Increase Potential in Value-Added of the Associated Metals from Copper Refining. Jurnal Teknologi Mineral dan Batubara, 8, h. 17-27.

Sapiie, B. dan Cloos, M., 2013, Strike–slip faulting and veining in the Grasberg giant porphyry Cu–Au deposit, Ertsberg (Gunung Bijih) mining district, Papua, Indonesia. International Geology Review, 55, h. 1-42.

Seedorff, E., 2005, Porphyry deposits: characteristics and origin of hypogene Features. Society of economist Geologists, Inc. Economic Geology 100th Anniversary Volume. Canada.

Sillitoe, R. H., 2010, Porphyry copper systems. Economic Geology, 105, h. 3-41.

Sillitoe, R., 1979, Some thoughts on gold-rich porphyry copper deposits. Mineralium Deposita, 14, h. 161-174.

Sillitoe, R. H., 2002, Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Mineralium Deposita, 37, h. 4-13.

Sillitoe, R. H., 1980, Types of porphyry molybdenum deposits. Mining Magazine,142, h. 550-553.

Sillitoe, R. H., 1995. Exploration of porphyry copper lithocaps. Di dalam Pacrim Congress 1995 'Exploring the Rim' (h. 527-532). Aust. Inst. Mining Metall.

Simon. G., Kesler, S. E., Essene, E. J. and Chryssoulis, S. L., 2000, Gold in porphyry copper deposits: experimental determination of the distribution of gold in the Cu–Fe–S system at 400° to 700°C. Economic Geology, 95, h. 259–270.

Sinclair, W. D., 2007, Porphyry deposits. Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, h. 223-243.

Tarkian, M. and Stribrny, B., 1999, Platinum-group elements in porphyry copper deposits: A reconnaissance study. Mineralogy and Petrology, 65, h. 161–183.

Taylor, R. D., Hammarstrom, J. M., Piatak, N. M. dan Seal II, R. R., 2012, Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment (No. 2010-5070-D). US Geological Survey.

Tokmakchieva, M., 1999, Bornite mineralization in the content of copper deposits in our country. Geology and Mineral Resources, No. 8-9, h. 40–44.

Tokmakchieva, M., 2002, Valuable minor components in the composition of porphyry copper deposits. Annual of the University of Mining and Geology “St. Ivan Rilski,” Sofa, Bulgaria, 45, pt. 1, h.71–75

Weerts, P., 2002, Umicore streamlines precious recovery: Metal Bulletin Monthly/Copper Supplement, issue 374, February, 36h.

Wang, C., Li, S., Wang, H. dan Fu, J., 2016, Selenium minerals and the recovery of selenium from copper refinery anode slimes. The Journal of The Southern Africa Institute of Mining and Metallurgy, 116, h. 593-600.

Watterson, J. R., Gott, G. B., Neuerburg, G. J., Lakin, H. W. dan Cathrall, J. B., 1977, Tellurium, a guide to mineral deposits. Journal of Geochemical Exploration, 8, h. 31-48.

Zhao, C. 1987, Bayan Obo scandium. Baogangkeji, 04, h. 1–4.

Published
2019-05-29
Section
Buletin Sumber Daya Geologi